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ABSTRACT 
In this paper we investigate the performance of CGS, BCGSTAB and GMRES with ILU preconditioner 
for solving convection-diffusion problems. Numerical experiments indicate that BCGSTAB appears to be 
an efficient and stable method. CGS sometimes suffers from severe numerical instability. GMRES shows a 
higher suitability and stability but the overall convergence rate may be lower. 
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INTRODUCTION 

The finite difference or finite element discretisation of partial differential equations in many 
application areas, such as solid mechanics, CFD, meteorology, petroleum reservoir, neutron 
diffusion, etc., give rise to the following large sparse algebraic equations: 

Ax=b (1) 
where A is a n × n nonsingular matrix, b is the known vector, and x is the solution to be found. 

In general, there are two kinds of solvers for linear equations: direct and iterative. For large 
scale equations the number of unknowns may reach over 10000 so that the sparsity and the 
structure of the algebraic system have to be exploited while adopting any solution method. 
Although these may be incorporated within Gauss elimination-based direct methods, and sparse 
matrix techniques, as well as other acceleration schemes7,8, the computational efficiency is low 
and the storage requirements are still extremely high, even for current supercomputers. It can 
be argued, however, that more powerful computers with larger space capabilities are becoming 
available, but at the same time there is an even increasing demand for the solution of more 
complicated and larger problems. In these cases, a solution can be obtained by iterative methods 
with reasonable computational costs in terms of time and storage. For this reason, iterative 
methods have been drawing increasing attention in recent years. 

Iterative methods offer compelling promise over direct methods in regard to the following 
aspects11: 
1 Much easier to exploit system sparsity and thus the computer memory required may be 

substantially reduced, especially for large problems 
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2 Relatively simple in implementation 
3 These methods may prove more conducive to effective implementation in emerging computer 

systems with vector and parallel processing facilities 
4 Accuracy may be more controllable and thus computing time may be saved in the cases where 

only a lower level accuracy is required 
5 They may lead to a more synergistic incorporation in the solution of evolving non-linear 

problems 

However, iterative methods suffer from the following shortcomings: 
1 Convergence rates may be very low; or more severely, convergence can not always be guaranteed 
2 They can not efficiently process multi-right hand sides of problems 
3 Performance of many iterative algorithms are problem-dependent 

These severe disadvantages make iterative methods incompetitive in comparison to direct 
methods in solving small and medium scale linear systems. 

For symmetric positive definite (SPD) problems it seems quite clear that the conjugate gradient 
method (CG) is a very efficient solver for many practical problems, but this is not the case for 
nonsymmetric systems. 

A number of iterative methods have been proposed that are applicable to the nonsymmetric 
cases1,6,9,14,17,20. At the moment, however, there are no theoretical means available to estimate 
the performances of these methods in practice, and makes it very difficult for users to choose 
the best method to solve their own problems; and in particular to select a robust and efficient 
iterative solvers to incorporate in a commercial general-purpose FE software. 

Moreover, the convergence of iterative methods depends to a great extent on the preconditioning 
and 'good' preconditioners suitable for a large variety of practical problems are rare. 

Consequently, numerical experiments are necessarily used to obtain insight and confidence in 
the efficiency and robustness of a particular method or to obtain knowledge of the most 
appropriate method for solving a particular problem. But on the other hand, one should carefully 
choose the test problems, to try and make them typical of a wider class of problems and to take 
into account the nature of the problems. Otherwise unjust or even totally incorrect conclusions 
may be drawn. 

For convection-diffusion type problems, several numerical investigations have been carried 
out. Sonneveld16 found the conjugate gradient squared method (CGS)17 with incomplete 
Cholesky decomposition (ILU)12 and block ILU (BLU)3 preconditioning to be more efficient 
than other nonsymmetric CG methods. Whereas Axelsson et al.4 showed that a general least 
squares conjugate gradient method (CG-LS)2 coupled with BLU methods, can work exceptionally 
well and that the number of iterations is sometimes significantly less than that of the corresponding 
nearly symmetric problem. Recently, however, CGS is found to have an irregular convergence 
behaviour and a 'stabilized' variant of it, called BCGSTAB, has been developed by Van der 
Vorst19. In addition, the GMRES approach proposed by Saad and Schultz14 has been successully 
applied to various fields10,15,18. 

In this paper, we shall extensively investigate the performance of CGS, BCGSTAB and GMRES 
for solving 2-D convection-diffusion problems by varying the value of the diffusion coefficients 
from zero to a very large value in order to investigate the behaviour of these methods over a 
range of conditions. The preconditioner used is a point-wise incomplete Cholesky decomposition 
(ILU) with no fill-in scheme. It is shown that the BCGSTAB method exhibits a good numerical 
stability and efficiency, while the CGS method does have an irregular convergence characteristics 
although it sometimes shows a better convergence. But both approaches are superior to GMRES 
in terms of CPU time and storage costs in the case of the diffusion term being significant. In 
convection dominated cases, however, CGS and BCGSTAB may fail to converge whereas 
GMRES may still achieve a solution. Meanwhile, we also notice that the ILU scheme may break 
down for almost pure convection problems. 
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In the following section the convection-diffusion equation is recalled. The iterative methods 
and ILU preconditioner which will be tested are briefly discussed and numerical experiments 
and remarks are also presented. 

CONVECTION-DIFFUSION PROBLEM 

Consider the following convection diffusion equation: 
(2) 

where v is the velocity vector; Ω is the fluid domain with boundary Γ; c is a vector of diffusion 
coefficients. In the 2-D case, c={cx,cy}T, in which cx,cy are diffusion coefficients in x and y 
directions respectively. Let n (x) be the outward unit normal on the boundary Γ which is 
partitioned into three sets: 

Γi = {xЄΓ|v(x)•n<0} 
Γc={xЄΓ|v(x)•n = 0} 
Γo = {xЄΓ|v(x)•n>0} 

corresponding to the inflow, characteristic and outflow boundaries respectively. Dirichelet 
boundary condition u(X)= 1 is imposed on the inflow portion of Γi, while no boundary conditions 
are specified on the characteristic and outflow boundaries. Moreover, we set the source term 
f(x)=0. In such a case it is easy to prove that: 

u(x) = l 
will be the solution of (2). 

The solution may be obtained by Petrov-Galerkin finite element methods, and the corresponding 
matrix A can be highly nonsymmetric, unless the diffusion term is dominant. In order to indicate 
the degree of nonsymmetry of matrix A, we define a factor nf, called the nonsymmetric factor, 
as follows: 

where AT is the transpose of A; ||A||F denotes the Frobenous norm of A, i.e. 

It is obvious that nf will be zero if v = 0 and nf reaches its maximum value when c=0. The 
former case corresponds to a pure diffusion problem (i.e. a SPD problem) whereas the latter is 
a pure convection problem. 

ITERATIVE METHODS FOR NONSYMMETRIC PROBLEM 

A large number of iterative methods have been developed for solving nonsymmetric problems 
in the last 20 years. These methods can be broadly classified into two categories: generalized 
conjugate gradient type algorithms and Galerkin-Krylov type approaches. 

In general, there are three main approaches for the generalization of CG for handling 
nonsymmetric cases. One is based on the transformation of the nonsymmetric problem into a 
SPD problem, and then solving the resulting system, named the normalised equations, with CG. 
This method is termed CGN. The CGN approach is not always applicable in practice, because 
the condition number of the resulting system may be extremely large, and consequently it may 
require a large number of iterations to converge even for small problems. Another approach is 
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to choose an auxiliary matrix Z such that ZA becomes positive real (PR) or equivalently has a 
symmetric part which is positive definite. The generalized conjugate residual method (GCR)5 and 
the idealized generalized conjugate-gradient method (IGCG) with three equivalent forms referred 
as ORTHODIR, ORTHOMIN, and ORTHORES20 respectively, belong to this class. These 
methods preserve the convergence properties of CG so that the iterative process converges to 
the true solution after a maximum n steps in exact arithmetic. However, all previous 
search-directions must be kept since they are utilized to orthogonalize with the current residual 
vector to obtain a new search-direction. The simplified versions of the IGCG methods9 reduce 
the number of previous search-directions retained to the last one or two. The biconjugate gradient 
method (BCG), first proposed by Fletcher6, is another generalized CG type method which 
re-interprets the CG algorithm by using a recurrence formula so that full orthogonalization is 
not necessary. The BCG method also fails to converge or breaks down in many cases of practical 
interest. A recent extension of BCG, the conjugate gradient squared method (CGS)17, however, 
is found to be more efficient that BCG, but suffers from numerical instability. Its stabilized 
version, BCGSTAB has therefore been put forward19 to amend this shortcoming. 

GMRES, generalized minimum residual method, is a typical Galerkin-Krylov type method. It 
is a residual minimization method which is basically arrived at by the introduction of an 
optimality property into the Arnoldi algorithm which supplies a stable way to generate Krylov 
subspace. Like GCR and IGCG, it utilizes all previous iteration vectors at the current iterative 
step. 

These features cause some practical difficulties in the implementation of GMRES as well as 
GCR and IGCG. As the number of iterations increases, the number of vectors stored also 
increases. In addition, the number of multiplications performed is proportional to the square of 
the number of iterations. The methods thus becomes expensive in terms of both storage and 
computation if the number of iterations required for convergence is large. One way to deal with 
these difficulties is to use their restarted versions instead of the full versions. The restarted 
versions of GMRES, GCR and IGCG are referred to as GMRES(m), GCR(m) and IGCG(m) 
respectively. In these forms, the algorithms are restarted after every m steps if the convergence 
is not achieved. The rate of convergence will inevitably become slower and some convergence 
properties of the full versions may not hold in the restarted cases. Besides, how to choose an 
appropriate restart value m remains an unanswered question. 

The GMRES algorithm is theoretically equivalent to GCR and ORTHODIR, but it is less 
costly in terms of both storage and arithmetic14. Furthermore, GMRES can not break down 
unless it delivers the exact solution in a sense of exact arithmetic. Therefore, GMRES(m) will be 
evaluated in our numerical experiments. 

Unlike the GMRES method, BCG, CGS and BCGSTAB only need to keep the vectors 
generated at the last step which means much less storage as well as less computation is required, 
especially for large problems. 

Because of this attractive property, BCG, CGS and BCGSTAB are selected to be fully tested 
and are compared with GMRES(m). For detailed descriptions of the methods, we refer to 
References 6, 14, 17, 19. 

We denote by NZ the number of nonzero entries in A. The number of multiplications in a 
sparse matrix-vector product will be NZ. 

If the costs of small computing are neglected and the storage of A, b and x are not included, 
the total multiplications and the number of vectors to be stored in GMRES(m), BCG, CGS and 
BCGSTAB at each step are summarized in Table 1, in which the multiplication of GMRES(m) 
means average operations at each step. 

Remark 1: Compared with the BCG method, CGS and BCGSTAB need small additional 
costs in both floating point operations and computer memory requirement, but eliminate the 
need of dealing with AT, which makes codes marginally more complicated. It is also clear that 
BCGSTAB is slightly more costly than CGS. 
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Table 1 Storage and multiplications of BCG, CGS, BCGSTAB and GMRES(m) 

Vectors stored 
Multiplications 

BCG 

5 
2NZ + 7n 

CGS 

7 
2NZ + 9n 

BCGSTAB 

7 
2NZ+10n 

GMRES(m) 

(m + 2) 
NZ+(m+4)n 

Table 2 The forms of Ā, and for different preconditioning versions 

Preconditioning version 

Left 
Right 
Left-right 

A 

(LU)-lA 
A(LU)-1 

L-lAU-l 

(LU)-1b 
b 
L-1b 

X 
(LU)x 
Ux 

Remark 2: In general, GMRES(m) may be more expensive in both computational time and 
storage requirements, but it needs only one matrix-vector multiplication at each step. Hence, 
average multiplication of GMRES(m) at each step may be less than the others in the case 
where the matrix-vector product is costly. 

PRECONDITIONING 

A suitable preconditioner is crucial to obtaining a rapid convergence of iterative methods and 
choosing good preconditioners for general matrices is an important research issue. An efficient 
preconditioner should be a close approximation of matrix A, easily computed and inverted 
(explicitly or implicitly) as well as reasonably sparse. Moreover, all relevant computation processes 
should be concurrent if the iterative methods need to be highly parallelized or vectorized. A 
commonly used preconditioning technique that possesses these properties (except concurrency) 
is the incomplete Cholesky decomposition (ILU) with no fill-in scheme, called ILU(0)12. 

Although Axelsson et al.4 showed that block incomplete matrix factorization methods can 
work exeptionally well on convection-diffusion problems, the incomplete factorization is based 
on line block in a polygonal region and is not applicable for general subdomains with an 
unstructured mesh. Hence we select ILU(0) (the diagonal terms of L are set to be unity) as the 
preconditioner in our following numerical experiments. 

Since no fill-in is allowed for in ILU(0) factorization, the solution of the equations such as 
LUx=b involves the same number of floating point operations as the sparse matrix-vector 
product Ax. 

In applying ILU preconditioning to nonsymmetric systems of equations, there are three slightly 
different versions to choose, which are referred as left, right and left-right preconditioning 
respectively. Assuming the equivalent form of the original system (1) after preconditioning is as 
follows: 

(3) 
then A, and will show different forms with the above different preconditioning versions, as 
listed in Table 2. 

Different forms of Ā have different condition numbers and different distributions of eigenpairs, 
and consequently have different effects on the convergence of iterative methods. No theoretical 
results, however, seem available to compare the efficiencies of these three preconditioning versions, 
and often contradicting opinions are presented in References 10,18. Hence all three preconditioning 
patterns will be examined in our test problems. We note that ILU may break down in practical 
problems as A can not be guaranteed to be a M-matrix12. 
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Table 3 The details of finite element models 

Mesh 

Low resolution 
High resolution 

Nodes 

10201 
40401 

Elements 

10000 
40000 

Orders 

10195 
40390 

Nonzero entries 

90545 
361485 

NUMERICAL EXPERIMENTS 

In this section, we undertake numerical experiments to compare the performance of GMRES(m) 
with other conjugate gradient-like methods, BCG, CGS and BCGSTAB. The tests are performed 
on a HP-9000 series 730 workstation, using double precision. All Fortran codes are compiled 
and linked optimally to level 2. 

The test problem selected is a 2-dimensional 10m × 50m rectangular region as shown in 
Figure 1, with a 2.5m inflow boundary Γi at the right bottom corner (line a-b), and an outflow 
boundary Γo at the top (line c-d). Two different finite element mesh resolutions are used to 
discretize this region; one low resolution with 100 x 100 regular mesh and the other a high 
resolution with 200 × 200 regular mesh. More detailed descriptions are listed in Table 3, including 
the number of nodes, elements and order of equations, as well as the nonzero entries in A. 

The velocity field V(x) is firstly determined by the following model13: 
(4) 
(5) 

where p(x) is the pressure in the region and G is defined by: 

in which α and β are constants, and β = — 0.1 is used in our computations. 
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Table 4 The costs of iterative methods with left preconditioning for low resolution 

nf 
0.0 

.184e-l 

.245 

.735 

.992 
1.82 
3.58 
6.73 

CGS 

144 
69 
36 
35 
35 
35 
57 

447 

Iterations 

BCGSTAB 

143 
71 
42 
38 
36 
39 
60 

650 

GMRES 

276@ 

105 
56 
46 
44 
48 
72 

128 

CGS 

80.34 
38.60 
20.38 
19.79 
19.79 
19.79 
32.19 
251.6 

CPU time 

BCGSTAB 

81.30 
40.44 
24.23 
21.81 
20.85 
22.44 
34.65 

371.4 

GMRES 

475.7 
178.7 
57.89 
41.28 
38.28 
44.35 
90.34 

259.7 

Note @: computed by restarted version m = 144; ×: not converged 

Substituting (5) into (4) results in: 

which is a quasi-linear elliptic partial differential equation and can be solved numerically to 
obtain nodal pressure values by the finite element method, combined with the following boundary 
conditions: 

P|Γi = Po, P|Γo= 0 
The velocity fields in every element may then be easily computed based on the element shape 
functions and the relationship (5). The same meshes are used in both velocity field and 
convection-diffusion computation. 

In all cases we set cx= cy = c. With the Petrov-Galerkin procedure21, the element stiffness of 
the convection-diffusion problem is represented in the following form: 

where W is the weighting function, the form of which could be found in Reference 21. Therefore, 
the global stiffness matrix A will be nonsymmetric unless V=0. If we choose different values of 
c, A will have different degrees of nonsymmetry, which can be measured quantitatively by the 
nonsymmetric factor nf defined previously. In addition, diagonal dominance in our cases is 
violated slightly. 

All three preconditioning versions, left, right and left-right are examined in our tests. Here we 
directly solve equations rather than Ax=b. The terminating criterion is selected by 
requiring the relative residual norm to be less than ε= 10 -10, i.e.: 

The total number of iterations and the solution CPU times (in seconds) of CGS, BCGSTAB 
and GMRES with three preconditioning versions for low and high resolutions are listed in 
Table 4-6 and Table 7-9 respectively. We find that BCG is much inferior to the other methods, 
and thus the corresponding results are not included in the tables. For the low resolution mesh, 
the full version of GMRES is used except for the case that nf =0.0 where GMRES(144) is applied. 
The restarted version (m = 50) is used for high resolution mesh. 

The computations show that when convection term becomes significant, the incomplete 
Cholesky factorization may break down or LU may become nearly singular, whch causes the 
iterative procedure barely operable in the former case or the accuracy of the final solutions to 
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Table 5 The costs of iterative methods with right preconditioning for low resolution 

nf 
0.0 
.184e-l 
.245 
.735 
.992 

1.82 
3.58 
6.73 

CGS 

147 
71 
39 
29 
26 
46* 
67 

776 

Iterations 

BCGSTAB 

136 
77 
38 
39 
35 
42 
73 

317 

GMRES 

276 
103 
55 
45 
44 
50 
77 

144 

CGS 

81.23 
39.72 
22.02 
16.47 
14.82 
25.88 
37.41 

480.4 

CPU time 

BCGSTAB 

78.50 
43.91 
21.81 
22.44 
20.20 
24.23 
41.58 

180.2 

GMRES 

475.7 
172.6 
56.08 
39.77 
38.28 
46.57 

101.5 
323.1 

Note: the accuracy of final solution is deteriorated (*) or severely deteriorated (**) 

Table 6 The costs of iterative methods with left-right preconditioning for low resolution 

nf 

0.0 
.184e-l 
.245 
.735 
.992 

1.82 
3.58 
6.73 

CGS 

145 
70 
39 
30 
29 
41* 
61 

654 

Iterations 

BCGSTAB 

143 
71 
40 
40 
40 
42 
74 

337 

GMRES 

276 
104 
56 
45 
44 
50 
76 

145 

CGS 

80.62 
39.08 
22.02 
17.00 
16.47 
23.06 
34.24 

366.7 

CPU time 

BCGSTAB 

81.00 
40.44 
22.96 
22.96 
22.96 
24.23 
42.08 

195.7 

GMRES 

475.7 
175.7 
57.89 
39.77 
38.28 
46.57 
99.23 

325.0 

Table 7 The costs of iterative methods with left preconditioning for high resolution 

nf 

0.00 
.094 
.187 
.649 
.936 

1.87 
3.70 

CGS 

293 
107 
69 
66 
84** 

129 
128** 

Iterations 

BCGSTAB 

273 
100 
84 
48 
65 
60* 

241** 

GMRES 

596 
449 

84 
82 
93 

231** 

CSG 

509.4 
186.7 
120.7 
115.5 
147.7 
224.4 
294.5 

CPU time 

BCGSTAB 

481.5 
177.1 
140.8 
103.4 
117.2 
106.6 
426.2 

GMRES 

1823.2 
1378.5 
232.8 
226.8 
271.6 
683.4 

Table 8 The costs of iterative methods with right preconditioning for high resolution 

nf 

0.0 
.094 
.187 
.749 
.936 

1.87 
3.70 

CGS 

293 
88 
70 
49* 
49** 

101* 
210** 

Iterations 

BCGSTAB 

263 
90 
75 
59 
61 
84 

172** 

GMRES 

478 
298 

78 
85 

122 
341** 

CGS 

509.4 
154.0 
122.8 
86.24 
86.24 

176.5 
367.2 

CPU time 

BCGSTAB 

467.6 
159.6 
133.4 
104.2 
109.0 
148.2 
304.7 

GMRES 

1436.5 
912.5 
212.4 
239.2 
347.0 

1125.9 
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Table 9 The costs of iterative methods with left-right preconditioning for high resolution 

nf 

0.0 
.094 
.187 
.749 
.936 

1.87 
3.70 

CGS 

297 
86 
75* 
48** 
50** 
97* 

210** 

Iterations 

BCGSTAB 

269 
104 
93 
65 
69 
84 
× 

GMRES 

606 
512 
91 
86 

110 
394** 

CGS 

517.5 
150.2 
131.0 
84.33 
89.23 

169.2 
367.2 

CPU time 

BCGSTAB 

476.1 
184.1 
165.0 
115.4 
122.7 
148.9 

GMRES 

849.6 
1553. 
262.6 
241.2 
320.5 

1200. 

be very low in the latter. Therefore, for convection dominated problems, more reliable 
preconditioning techniques may be needed. 

From the results we can not directly compare the performances of the different precondition 
patterns since the terminating criterion is not the same in these cases. However, no consistent 
patterns emerges when comparing the various methods for different nf values. We observe, 
however, that with right and left-right preconditioning the CGS method sometimes exhibits high 
oscillation in the convergence histories, as shown in Figures 2 and 3 (both with right pre­
conditioning), whereas the situation appears to be much better with left preconditioning. 

We also notice that CGS is slightly more efficient than BCGSTAB in almost all cases, but it 
sometimes suffers from numerical instability as mentioned above, which may also severely 
deteriorate the accuracy of the final solutions. For example, in the case shown in Figure 3, the 
final solution has only an accuracy of approximately 10- 3, although the terminating criterion 
has been satisfied. However, BCGSTAB shows a better numerical stability in all cases. On the 
other hand, the convergence rate of GMRES exhibits no oscillatory behaviour but is slower 
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compared with BCG and BCGSTAB. If nf increases to a large value, the convergence rates of 
CGS and BCGSTAB begin to decrease, while GMRES still performs reasonably well. 

It is interesting to note that when nf ≈0.1— 2.0 the costs of the iterative methods are only 
approximately one third of the symmetric case (nf = 0). This observation is consistent with the 
work of Axelsson4 where the number of iterations for convection-diffusion problems is sometimes 
significantly smaller than that for the corresponding (nearly) symmetric problem. 

For pure diffusion problems, A becomes SPD in which case CG needs 178 iterations to 
converge for the low resolution case, about 40 iterations more than CGS and BCGSTAB. But 
the CPU time is nearly half, since CGS and BCGSTAB need much more work at each step. As 
for the high resolution case, CG is much inferior to CGS and BCGSTAB in terms of iterations 
and CPU times. 

FINAL REMARKS 

The numerical results shown in the previous section indicate that BCGSTAB appears to be an 
efficient and stable iterative method for the solution of convection-diffusion problems for the 
time being. Although CGS appears to be slightly more efficient than BCGSTAB, it sometimes 
suffers from severe numerical instability which might deteriorate the computational results. On 
the other hand, GMRES shows a higher suitability but the overall convergence rate is lower. 

It should be noted that the test problem in our work is 2-D and GMRES may be less expensive 
for 3-D problems. Therefore, further 3-D test problems are needed to confirm the conclusions 
presented here. 

It is also important to observe that present results are related to the global (ILU) type 
preconditioning, while various other preconditioning techniques are currently being explored. 
A promising prospect, for instance, is offered within a multigrid preconditioning technique. In 
addition, a combination of a direct and iterative solver within a domain decomposition method, 
where the local problem is solved by a direct method and the interface problem is solved by an 
iterative solution is expected to significantly improve the overall conditioning. 
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